Build in Biasing Circuit MOS FET IC UHF RF Amplifier

HITACHI

ADE-208-505 1st. Edition

Features

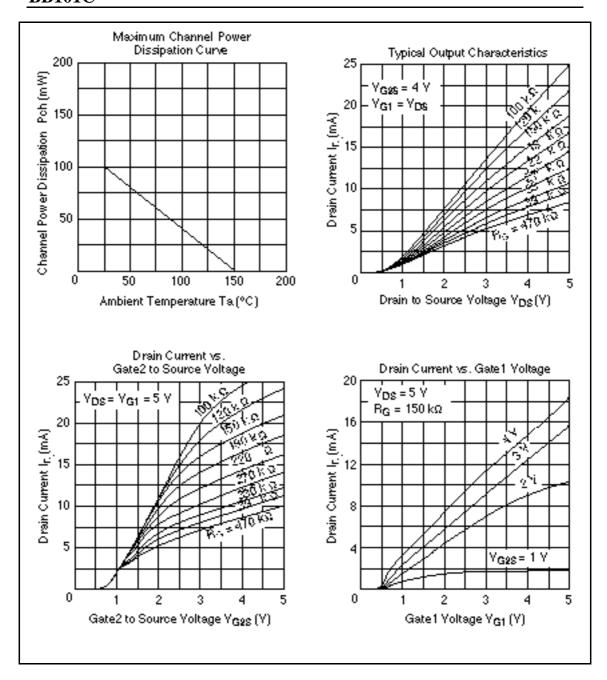
- Build in Biasing Circuit; To reduce using parts cost & PC board space.
- Low noise characteristics; (NF = 2.0 dB typ. at f = 900 MHz)
- Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 200 V at C = 200 pF, Rs = 0 conditions.

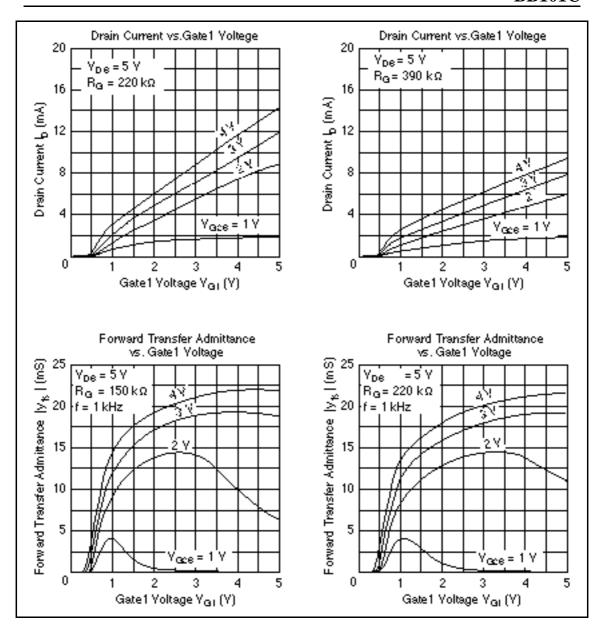
Outline

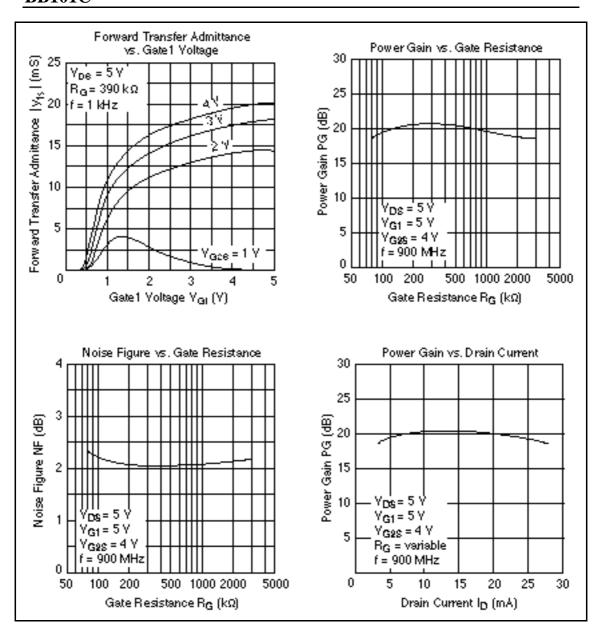
CMPAK-4 3 2 1. Source 2. Gate 1 3. Gate 2 4. Drain

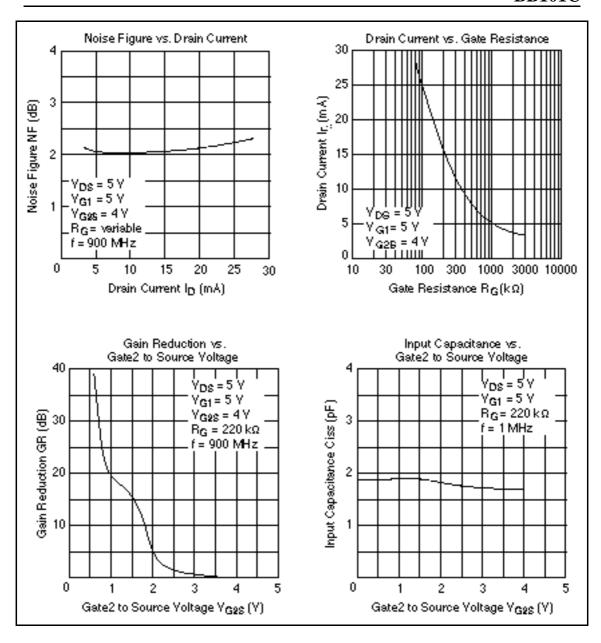
Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

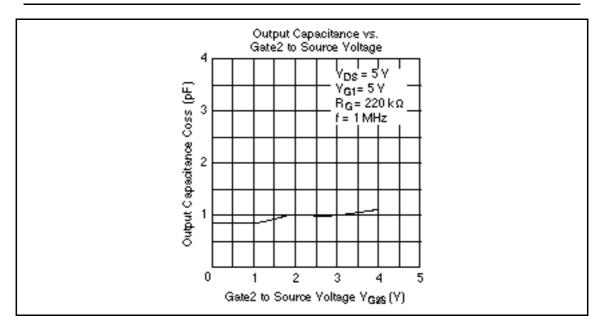
Item	Symbol	Ratings	Unit	
Drain to source voltage	V _{DS}	6	V	
Gate 1 to source voltage	$V_{\sf G1S}$	+6 -0	V	
Gate 2 to source voltage	$V_{\rm G2S}$	±6	V	
Drain current	I _D	25	mA	
Channel power dissipation	Pch	100	mW	
Channel temperature	Tch	150	°C	
Storage temperature	Tstg	-55 to +150	°C	

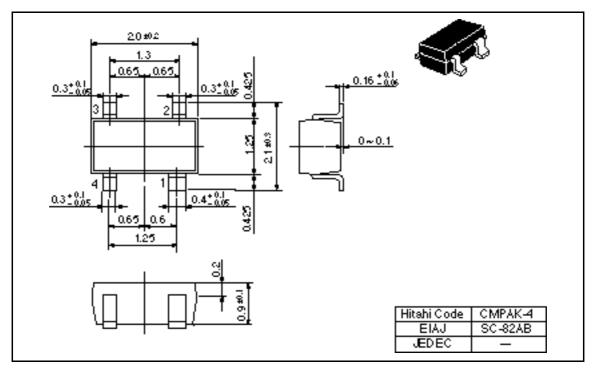

Electrical Characteristics ($Ta = 25^{\circ}C$)


Item	Symbol	Min	Тур	Max	Unit	Test conditions
Drain to source break down voltage	$V_{(BR)DSS}$	6	_	_	V	$I_D = 200 \mu A$ $V_{G1S} = V_{G2S} = 0$
Gate 1 to source breakdown voltage	$V_{(BR)G1SS}$	+6	_	_	V	$I_{G1} = +10 \mu A$ $V_{G2S} = V_{DS} = 0$
Gate 2 to source breakdown voltage	$V_{(BR)G2SS}$	±6	_	_	V	$I_{G2} = +10 \mu A$ $V_{G1S} = V_{DS} = 0$
Gate 1 to source cutoff current	I _{G1SS}	_	_	+100	nA	$V_{G1S} = +5 V$ $V_{G2S} = V_{DS} = 0$
Gate 2 to source cutoff current	I _{G2SS}	_	_	±100	nA	$V_{G2S} = \pm 5 V$ $V_{G1S} = V_{DS} = 0$
Gate 1 to source cutoff voltage	$V_{\text{G1S(off)}}$	0.2	_	8.0	V	$V_{DS} = 5 \text{ V}, V_{G2S} = 4 \text{ V}$ $I_{D} = 100 \mu\text{A}$
Gate 2 to source cutoff voltage	$V_{\text{G2S(off)}}$	0.4	_	1.0	V	$V_{DS} = 5 \text{ V}, V_{G1S} = 5 \text{ V}$ $I_D = 100 \mu\text{A}$
Drain current	I _{D(op)}	10	15	20	mA	$V_{DS} = 5 \text{ V}, V_{G1} = 5 \text{ V}$ $V_{G2S} = 4 \text{ V}, R_{G} = 220 \text{ k}$
Forward transfer admittance	y _{fs}	16	22	_	mS	$V_{DS} = 5 \text{ V}, V_{G1} = 5 \text{ V}$ $V_{G2S} = 4 \text{ V}$ $R_G = 220 \text{ k}$, $f = 1 \text{ kHz}$
Input capacitance	Ciss	1.2	1.7	2.2	pF	$V_{DS} = 5 \text{ V}, V_{G1} = 5 \text{ V}$
Output capacitance	Coss	0.7	1.1	1.5	pF	$V_{G2S} = 4 \text{ V}, R_G = 220 \text{ k}$
Reverse transfer capacitance	Crss		0.012	0.03	pF	f = 1 MHz
Power gain	PG	16	20		dB	$V_{DS} = 5 \text{ V}, V_{G1} = 5 \text{ V}$ $V_{G2S} = 4 \text{ V}$
Noise figure	NF	_	2.0	3.0	dB	$R_G = 220 \text{ k}$, $f = 900 \text{ MHz}$


Note: Marking is "AU-".


Main Characteristics





Package Dimentions

Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.
Semiconductor & IC Div.
Nepon Bidg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokiyo 100, Japan
Tet Tokyo (03, 3270-2414
Fex: (03, 3270-5409

For Author in formellon write to:

Hitechi Americe, Ltd. Semiconductor & IC Div. 2000 Sierre Point Perlawey Briebene, CA. 94005-835 U.S.A. Tat 445-580-8300

Tet 415-589-8300 Fex: 415-583-4207 Hitechi Burope GmbH
Bedronic Componente Group
Cartinertal Burope
Darnecher Streße 3
D-85622 Feldkirchen
München
Tet 089-9 94 80-0
Fex: 089-9 29 30 00

Hitachi Burope Ltd.
Bedronic Componenta Div.
Northern Burope Headquartera
Whitborook Fark
Lower Cook hem Road
Heidenhead
Barkshire SL68YA
Urited Kingdon
Tet 0628-888000
Fex: 0628-778322

Hitachi Asia Pta, Ltd 45 Collyer Quay \$20-00 Hitachi Tower Snappore 0404 Tet 535-2400 Fex: 535-4533

Hitachi Asia (Hong Kong) Ltd. Unit 705, North Towar, World Finance Cantra, Harbour City, Carton Road Taim She Taul, Kowloon Hong Kong Tet 27:350218 Fax: 27:306074